Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Genes ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594489

RESUMO

LesaNPV (Leucoma salicis nucleopolyhedrovirus) is an alphabaculovirus group Ib. Potentially, it can be an eco-friendly agent to control the white satin moth Leucoma salicis population. In this study, we have established the relationship between LesaNPV and other closely related alphabaculoviruses. Environmental samples of late instar of white satin moth collected in Poland infected with baculovirus have been homogenized, polyhedra were purified and subjected to scanning and transmission electron microscopy. Viral DNA was sequenced using the Illumina platform and the whole-genome sequence was established by de novo assembly of paired reads. Genome annotation and phylogenetic analyses were performed with the use of bioinformatics tools. The genome of LesaNPV is 132 549 bp long with 154 ORFs and 54.9% GC content. Whole-genome sequencing revealed deletion of dUTPase as well as ribonucleoside reductases small and large subunits region in LesaNPV genome compared to Dasychira pudibunda nucleopolyhedrovirus (DapuNPV) and Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) where this region is complete. Phylogenetic analysis of Baculoviridae family members showed that LesaNPV is less divergent from a common ancestor than closely related species DapuNPV and OpMNPV. This is interesting because their hosts do not occur in the same area. The baculoviruses described in this manuscript are probably isolates of one species and could be assigned to recently denominated species Alphabaculovirus orpseudotsugatae, historically originating from OpMNPV. This finding could have significant implications for the classification and understanding of the phylogeographical spread of baculoviruses.

2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474041

RESUMO

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Assuntos
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Loci Gênicos , Doenças das Plantas
3.
Virology ; 588: 109889, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778059

RESUMO

The lack of suitable in vitro culture model has hampered research on wild-type (WT) human coronaviruses. While 3D tissue or organ cultures have been instrumental for this purpose, such models are challenging, time-consuming, expensive and require extensive cell culture adaptation and directed evolution. Consequently, high-throughput applications are beyond reach in most cases. Here we developed a robust A549 cell line permissive to a human coronavirus 229E (HCoV-229E) clinical isolate by transducing CD13 and transmembrane serine protease 2 (TMPRSS2), henceforth referred to as A549++ cells. This modification allowed for productive infection, and a more detailed analysis showed that the virus might use the TMPRSS2-dependent pathway but can still bypass this pathway using cathepsin-mediated endocytosis. Overall, our data showed that A549++ cells are permissive to HCoV-229E clinical isolate, and applicable for further studies on HCoV-229E infectiology. Moreover, this line constitutes a uniform platform for studies on multiple members of the Coronaviridae family.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Humanos , Coronavirus Humano 229E/genética , Células A549 , Catepsinas/metabolismo , Endocitose , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
4.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834302

RESUMO

Military operations involve the global movement of personnel and equipment, increasing the risk of spreading infectious pathogens such as SARS-CoV-2. Given the continuous engagement of the Polish Armed Forces in overseas operations, an active surveillance program targeting Variants of Concern (VOC) of SARS-CoV-2 was implemented among military personnel. Screening using RT-qPCR tests was conducted on 1699 soldiers between November 2021 and May 2022. Of these, 84 SARS-CoV-2 positive samples met the criteria for whole genome sequencing analysis and variant identification. Whole genome sequencing was performed using two advanced next-generation sequencing (NGS) technologies: sequencing by synthesis and nanopore sequencing. Our analysis revealed eleven SARS-CoV-2 lineages belonging to 21K, 21L, and 21J. The predominant lineage was BA.1.1 (57% of the samples), followed by BA.1 (23%) and BA.2 (6%). Notably, all identified lineages detected in post-deployment screening tests were classified as VOC and were already present in Poland, showing the effectiveness of the Military Sanitary Inspection measures in mitigating the COVID-19 spread. Pre-departure and post-mission screening and isolation successfully prevented SARS-CoV-2 VOC exportation and importation. Proactive measures are vital in minimizing the impact of COVID-19 in military settings, emphasizing the need for continued vigilance and response strategies.


Assuntos
COVID-19 , Militares , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Polônia/epidemiologia , Sequenciamento Completo do Genoma
5.
Viruses ; 15(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37766299

RESUMO

Influenza A viruses (IAV) are still a cause of concern for public health and veterinary services worldwide. With (-) RNA-segmented genome architecture, influenza viruses are prone to reassortment and can generate a great variety of strains, some capable of crossing interspecies barriers. Seasonal IAV strains continuously spread from humans to pigs, leading to multiple reassortation events with strains endemic to swine. Due to its high adaptability to humans, a reassortant strain based on "human-like" genes could potentially be a carrier of avian origin segments responsible for high virulence, and hence become the next pandemic strain with unseen pathogenicity. The rapid evolution of sequencing methods has provided a fast and cost-efficient way to assess the genetic diversity of IAV. In this study, we investigated the genetic diversity of swine influenza viruses (swIAVs) collected from Polish farms. A total of 376 samples were collected from 11 farms. The infection was confirmed in 112 cases. The isolates were subjected to next-generation sequencing (NGS), resulting in 93 full genome sequences. Phylogenetic analysis classified 59 isolates as genotype T (H1avN2g) and 34 isolates as genotype P (H1pdmN1pdm), all of which had an internal gene cassette (IGC) derived from the H1N1pdm09-like strain. These data are consistent with evolutionary trends in European swIAVs. The applied methodology proved to be useful in monitoring the genetic diversity of IAV at the human-animal interface.

6.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535471

RESUMO

In June 2023, a fatal disease outbreak in cats occurred in Poland. Most cases tested in Poland (29 of 47) were positive for highly pathogenic avian influenza (HPAI) A (H5N1) virus. Genetic analyses revealed clade 2.3.4.4b with point mutations indicative of initial mammalian hosts adaptations. Cat viral sequences were highly similar (n = 21), suggesting a potential common infection source. To investigate possible infection routes, our group tested food samples from affected households. HPAI H5N1 virus was detected in one poultry meat sample.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Gatos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Polônia/epidemiologia , Aves , Filogenia , Mamíferos
7.
J Inherit Metab Dis ; 46(5): 916-930, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395296

RESUMO

Until now, only a few studies have focused on the early onset of symptoms of alkaptonuria (AKU) in the pediatric population. This prospective, longitudinal study is a comprehensive approach to the assessment of children with recognized AKU during childhood. The study includes data from 32 visits of 13 patients (five males, eight females; age 4-17 years) with AKU. A clinical evaluation was performed with particular attention to eye, ear, and skin pigmentation, musculoskeletal complaints, magnetic resonance imaging (MRI), and ultrasound (US) imaging abnormalities. The cognitive functioning and adaptive abilities were examined. Molecular genetic analyses were performed. The most common symptoms observed were dark urine (13/13), followed by joint pain (6/13), and dark ear wax (6/13). In 4 of 13 patients the values obtained in the KOOS-child questionnaire were below the reference values. MRI and US did not show degenerative changes in knee cartilages. One child had nephrolithiasis. Almost half of the children with AKU (5/13) presented deficits in cognitive functioning and/or adaptive abilities. The most frequent HGD variants observed in the patients were c.481G>A (p.Gly161Arg) mutation and the c.240A>T (p.His80Gln) polymorphism. The newly described allele of the HGD gene (c.948G>T, p.Val316Phe) which is potentially pathogenic was identified.


Assuntos
Alcaptonúria , Criança , Masculino , Feminino , Humanos , Pré-Escolar , Adolescente , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Alcaptonúria/patologia , Homogentisato 1,2-Dioxigenase/genética , Estudos Prospectivos , Estudos Longitudinais , Mutação
8.
Sci Rep ; 13(1): 7534, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160956

RESUMO

Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.


Assuntos
Bacteriófagos , Virulência/genética , Enterobacteriaceae , Mutação , Natação
10.
Clin Microbiol Infect ; 28(3): 451.e1-451.e4, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34920116

RESUMO

OBJECTIVES: This work aimed to analyse possible zoonotic spill-over of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report the spill-over of mink-adapted SARS-CoV-2 from farmed mink to humans after adaptation that lasted at least 3 months. METHODS: Next-generation sequencing and a bioinformatic approach were applied to analyse the data. RESULTS: In an isolate obtained from an asymptomatic patient testing positive for SARS-CoV-2, we found four distinguishing mutations in the S gene that gave rise to the mink-adapted variant (G75V, M177T, Y453F, and C1247F) and others. CONCLUSIONS: Zoonotic spill-over of SARS-CoV-2 can occur from mink to human.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/veterinária , Fazendas , Humanos , Vison , SARS-CoV-2/genética , Zoonoses
11.
Vaccines (Basel) ; 9(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835208

RESUMO

In the context of the ongoing COVID-19 pandemic, using a half-dose schedule vaccination can help to return to normalcy in a cost-efficient manner, which is especially important for low and middle-income countries. We undertook a study to confirm that in adults up to 55 years old, the humoral response to the half-dose (15 µg, 35 participants between 18 and 55 years old) and to the recommended dose (30 µg, 155 participants) in the two-dose three-week interval schedule would be comparable. Antibody levels were measured by the Elecsys Anti-SARS-CoV-2 S assay (Roche Diagnostics, upper detection limit: 2570 BAU/mL) on the day of dose 2 of the vaccine and then 8-10 days later to assess peak response to dose 2. The difference in proportions between the participants who did and did not exceed the upper detection limit 8-10 days after dose 2 was not statistically significant (p = 0.152). We suggest that a half-dose schedule can help to achieve widespread vaccination coverage more quickly and cheaply.

12.
Vaccines (Basel) ; 9(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34696259

RESUMO

We report a case of monitoring the antibody response to the BioNTech-Pfizer vaccine of a 50-year-old female diagnosed with rheumatoid arthritis undergoing treatment with methotrexate (MTX). Antibody levels were measured 21 days after dose 1 (i.e., on the day of dose 2) and then 8, 14 and 30 days after dose 2 with Elecsys Anti-SARS-CoV-2 S assay (Roche Diagnostics). Patient showed a negative result after dose 1 and had the serum sample retested using a LIAISON® SARS-CoV-2 TrimericS IgG assay (DiaSorin), which showed a positive result. Subsequent samples were tested using both assays. Antibody levels kept increasing but at a much slower rate than in patients not receiving any immunomodulatory therapies. Other research indicates that among patients with autoimmune diseases, those receiving disease-modifying antirheumatic drugs (DMARDs) have higher COVID-19 mortality than those treated with tumor necrosis factor inhibitors (TNFis). These results indicate the need for people with autoimmune diseases to be carefully observed following vaccinations, including testing of antibody levels, and treated as potentially at risk until the effect of vaccination is confirmed. The different available vaccines should also be tested to verify their usefulness in the case of people with autoimmune diseases and those who take different immunomodulatory medications.

13.
Euro Surveill ; 26(39)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34596017

RESUMO

Routine genomic surveillance on samples from COVID-19 patients collected in Poland during summer 2021 revealed the emergence of a SARS-CoV-2 Delta variant with a large 872 nt deletion. This change, confirmed by Sanger and deep sequencing, causes complete loss of ORF7a, ORF7b, and ORF8 genes. The index case carrying the deletion is unknown. The standard pipeline for sequencing may mask this deletion with a long stretch of N's. Effects of this deletion on phenotype or immune evasion needs further study.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Polônia
14.
Mol Plant Microbe Interact ; 34(11): 1328-1333, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34353114

RESUMO

Pectobacterium atrosepticum is a narrow-host-range, pectinolytic, plant-pathogenic bacterium causing blackleg of potato (Solanum tuberosum L.) worldwide. Till present, several P. atrosepticum genomes have been sequenced and characterized in detail; however, all of these genomes have come from P. atrosepticum isolates from plants grown in temperate zones, not from hosts cultivated under different climatic conditions. Herewith, we present the first complete, high-quality genome of the P. atrosepticum strain Green1 isolated from potato plants grown under a subarctic climate in Greenland. The genome of P. atrosepticum strain Green1 consists of one chromosome of 4,959,719 bp, with a GC content of 51% and no plasmids. The genome contains 4,531 annotated features, including 4,179 protein-coding genes, 22 ribosomal RNA genes, 70 transfer RNA genes, 8 noncoding RNA genes, 2 CRISPRs, and 126 pseudogenes. We believe that the information in this first high-quality, complete, closed genome of P. atrosepticum strains isolated from host plants grown in a subarctic agricultural region will provide resources for comparative genomic studies and for analyses targeting climatic adaptation and ecological fitness mechanisms present in P. atrosepticum.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Pectobacterium , Solanum tuberosum , Groenlândia , Pectobacterium/genética , Doenças das Plantas
15.
Vaccines (Basel) ; 9(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34451965

RESUMO

BACKGROUND: The introduction of the vaccination against SARS-CoV-2 infection creates the need for precise tools for the quality control of vaccination procedures, detection of poor humoral response, and estimation of the achieved protection against the disease. Thus, the study aimed to compare the results of the anti-SARS-CoV-2 tests to evaluate the application of the WHO standard unitage (the binding antibody units; BAU/mL) for a measurement of response to the vaccination. METHODS: Patients undergoing vaccination against SARS-CoV-2 with Pfizer/BioNTech BNT162b2 (BNT162b2) (n = 79), referred for SARS-CoV-2 antibody measurement prior to vaccination and 21 days after dose 1, and 8, 14, and 30 days after dose 2 were included. The sera were tested with three assays: Elecsys SARS-CoV-2 S (Roche), LIAISON® SARS-CoV-2 TrimericS IgG (DiaSorin), and SARS-CoV-2 IgG II Quant (Abbott). RESULTS: The three assays showed varying correlations at different time points in the study. The overall agreement for all samples was moderate to high (ρ = 0.663-0.902). We observed the most uniform agreement for the day of dose 2 (ρ = 0.775-0.825), while it was least consistent for day 8 (ρ = -0.131-0.693) and 14 (ρ = -0.247-0.603) after dose 2. The dynamics of changes of the SARS-CoV-2 antibody levels in patients without history of prior SARS-CoV-2 infection appears homogenous based on the Roche results, more heterogenous when considering the DiaSorin results, and in between for the Abbott results. CONCLUSIONS: The results highlight the need for further work on the international standard of measurement of SARS-CoV-2 Ig, especially in the era of vaccination. The serological assays can be useful to detect IgG/IgM antibodies to assess the response to the vaccination. However, they cannot be used interchangeably. In terms of the evaluation of the immune response to the BNT162b2 vaccine, Roche and Abbott kits appear to be more useful.

16.
Emerg Infect Dis ; 27(9): 2333-2339, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423763

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease and has been spreading worldwide since December 2019. The virus can infect different animal species under experimental conditions, and mink on fur farms in Europe and other areas are susceptible to SARS-CoV-2 infection. We investigated SARS-CoV-2 infection in 91 mink from a farm in northern Poland. Using reverse transcription PCR, antigen detection, and next-generation sequencing, we confirmed that 15 animals were positive for SARS-CoV-2. We verified this finding by sequencing full viral genomes and confirmed a virus variant that has sporadic mutations through the full genome sequence in the spike protein (G75V and C1247F). We were unable to find other SARS-CoV-2 sequences simultaneously containing these 2 mutations. Country-scale monitoring by veterinary inspection should be implemented to detect SARS-CoV-2 in other mink farms.


Assuntos
COVID-19 , Vison , Animais , Fazendas , Humanos , Polônia/epidemiologia , SARS-CoV-2
17.
Mol Plant Microbe Interact ; 34(9): 1088-1092, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33861631

RESUMO

Dickeya solani is an emerging plant-pathogenic bacterium causing disease symptoms in a variety of agriculturally relevant crop species worldwide. To date, a number of D. solani genomes have been sequenced and characterized; the great majority of these genomes have, however, come from D. solani strains isolated from potato (Solanum tuberosum L.) and not from other plant hosts. Herewith, we present the first complete, high-quality genome of D. solani IPO 2019 (LMG 25990), isolated from the ornamental plant Hyacinthus orientalis. The genome of D. solani IPO 2019 consists of one chromosome of 4,919,542 bp, with a GC content of 56.2% and no plasmids. The genome contains 4,502 annotated features, 22 ribosomal RNA genes, 73 transfer RNA genes, and one CRISPR. We believe that the information on this high-quality, complete, closed genome of D. solani strain isolated from a host plant different from potato (i.e. hyacinth) will provide resources for comparative genomic studies and for analyses targeting adaptation and ecological fitness mechanisms present in Dickeya solani species.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hyacinthus , Solanum tuberosum , Dickeya , Enterobacteriaceae/genética , Doenças das Plantas
18.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414352

RESUMO

Here, we report the coding-complete genome sequences of six influenza A(H1N1) strains that were detected in Vilnius, Lithuania, among patients exhibiting influenza-like symptoms during the 2009-2010 epidemic season, within national influenza surveillance. Several mutations were found in genes encoding hemagglutinin and neuraminidase, in comparison with the A/California/07/2009 reference strain (GenBank accession numbers NC_026433 and NC_026434).

19.
Front Plant Sci ; 11: 580330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983224

RESUMO

Dickeya solani is a Gram-negative bacterium able to cause disease symptoms on a variety of crop and ornamental plants worldwide. Weeds including Solanum dulcamara (bittersweet nightshade) growing near agricultural fields have been reported to support populations of soft rot bacteria in natural settings. However, little is known about the specific interaction of D. solani with such weed plants that may contribute to its success as an agricultural pathogen. The aim of this work was to assess the interaction of D. solani with its crop plant (Solanum tuberosum) and an alternative (S. dulcamara) host plant. From a collection of 10,000 Tn5 transposon mutants of D. solani IPO2222 carrying an inducible, promotorless gusA reporter gene, 210 were identified that exhibited plant tissue-dependent expression of the gene/operon into which the Tn5 insertion had occurred. Thirteen Tn5 mutants exhibiting the greatest plant tissue induction of such transcriptional units in S. tuberosum or S. dulcamara as measured by qRT-PCR were assessed for plant host colonization, virulence, and ability to macerate plant tissue, as well as phenotypes likely to contribute to the ecological fitness of D. solani, including growth rate, carbon and nitrogen source utilization, motility, chemotaxis toward plant extracts, biofilm formation, growth under anaerobic conditions and quorum sensing. These 13 transcriptional units encode proteins involved in bacterial interactions with plants, with functions linked to cell envelope structure, chemotaxis and carbon metabolism. The selected 13 genes/operons were differentially expressed in, and thus contributed preferentially to D. solani fitness in potato and/or S. dulcamara stem, leaf, and root tissues.

20.
Viruses ; 11(9)2019 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450681

RESUMO

Newcastle disease (ND) is responsible for significant economic losses in the poultry industry. The disease is caused by virulent strains of Avian avulavirus 1 (AAvV-1), a species within the family Paramyxoviridae. We developed a recombinant construct based on the herpesvirus of turkeys (HVT) as a vector expressing two genes: F and HN (HVT-NDV-F-HN) derived from the AAvV-1 genotype VI ("pigeon variant" of AAvV-1). This recombinant viral vaccine candidate was used to subcutaneously immunize one group of specific pathogen-free (SPF) chickens and two groups of broiler chickens (20 one-day-old birds/group). Humoral immune response was evaluated by hemagglutination-inhibition test and enzyme-linked immunosorbent assay (ELISA). The efficacy of the immunization was assessed in two separate challenge studies performed at 6 weeks of age with the use of virulent AAvV-1 strains representing heterologous genotypes IV and VII. The developed vaccine candidate elicited complete protection in SPF chickens since none of the birds became sick or died during the 2-week observation period. In the broiler groups, 90% and 100% clinical protection were achieved after challenges with AAvV-1 of IV and VII genotypes, respectively. We found no obvious relationship between antibody levels and protection assessed in broilers in the challenge study. The developed recombinant HVT-NDV-F-HN construct containing genes from a genotype VI AAvV-1 offers promising results as a potential vaccine candidate against ND in chickens.


Assuntos
Proteína HN/imunologia , Imunização/veterinária , Vírus da Doença de Newcastle , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Antígenos Virais/biossíntese , Antígenos Virais/genética , Galinhas/virologia , Proteção Cruzada , Genes Virais , Proteína HN/biossíntese , Proteína HN/genética , Testes de Inibição da Hemaglutinação , Herpesvirus Meleagrídeo 1/genética , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Meleagrídeo 1/metabolismo , Imunidade Heteróloga , Doença de Newcastle/imunologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/virologia , Proteínas Virais de Fusão/biossíntese , Proteínas Virais de Fusão/genética , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...